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CDF and POE

» X = random “loss”

» Cumulative Distribution Function (CDF) = F(z) = P{X < z}

» Probability of Exceedance (POE) = p(z) = P{X >z} =1 - F(z),
also known as Survival, Survivor, or Reliability function.

1
Fl) b plx)

Stan Uryasev



Risk Management with POE and CDF

Requirement: probability that loss exceeds threshold x is small

pz)<l—a eg,l—a=1-0.95=0.05

» Nuclear: probability that release of radiation exceeds some level

» Finance: default probability of a company (Assets-Liability < 0)

Equivalently: probability that loss is below threshold x is large

piz)=1-Fx)<l—-a =

F(z) >« e.g., a=0.95

» Material Science:
material should withstand the load x with high probability
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Quantile (VaR in finance)

Quantile g(«) is inverse of CDF.
Quantile is a solution of equation F(x) = ¢, i.e. F(g(a)) =« .
Quantile is a solution of equation p(x) =1 —a, i.e, p(g(a)) =1—«.
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Risk Management with Quantiles (VaR)

Requirement: Quantile with confidence « is less than some threshold

g(a) <z

» Finance: e.g., VaR for daily loss is below $1 billion
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Equivalence of POE and Quantile Constraints

Some engineering areas use POE other areas use Quantiles.

Constraints on POE and quantiles are equivalent. It is a matter of
convenience.

Finance uses quantiles (Value-at-Risk or VaR) specified in USD.

Nuclear engineering uses POE, maybe because probabilities are more
understandable to people than radiation dosages.
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POE(z) <1—a = quantile(a) <z

Continuous and strictly increasing CDF

plz) <1 -«
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quantile(a) <z =

Continuous and strictly increasing CDF
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POE(z) <1—-«a



POE and Quantiles: Poor Properties

POE and Quantile have poor mathematical properties:

> nonconvex in random variable
» discontinuous for discrete distributions w.r.t. parameters
» difficult to manage (optimize)

> are not conservative: do not take into account the values of
outcomes in the tail of the distribution
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Superquantile (CVaR) vs Quantile (VaR)

Superquantile G(a) = average of the tail in excess of quantile (VaR)

g(a) = inverse of F'(x) which is CDF of Superdistribution (red curve)
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Superquantile (CVaR) Properties

Formal Superquantile (CVaR) definition:

continuous distributions:

(o) = E{X|X > q()}
general (including discrete) distributions:
(@) = —— [ gfa)da = min{C + ——B[x - %)
qla) = 7 aqa @ = min = ,

where [X — C|T = max{0, X — C}

takes into account values of outcomes in the tail of the distribution
coherent risk measure (the best from theoretical perspective)
convex in random variable

continuous w.r.t. parameters

vV v.v. vy

easy to manage and optimize with convex and linear programming,
(Rockafellar & Uryasev (2000))
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bPOE vs POE

Buffered Probability of Exceedance (bPOE) =1 — F(z) =1 — «,
where « satisfies equation g(a) = x.

Superdistribution F'(z) (Rockafellar & Royset (2013)). Special case of
bPOE with « = 0 (Rockafellar & Royset (2010)). General bPOE case
and optimization representation (Norton & Uryasev (2014), Mafusalov &
Uryasev (2014)).
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bPOE properties

bPOE: will be a new hit in risk management, similar to CVaR

optimization representation: p(z) = min,>o Ela(X — ) + 1]*
takes into account values of outcomes in the tail of the distribution
quasi-convex in random variable X

lowest quasi-convex (in X') upper bound of POE

bPOE is about twice bigger than POE

continuous w.r.t. parameters

easy to manage (optimize with convex and linear programming)

o)<z <= pl)<l-a
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Risk Management in Different Fields

px)<1l-« nuclear, material, finance
gla) <z finance
jla) <z finance

p(z) <a optimization of large physical systems
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Example: bPOE Minimization

> L(z)=co+ Y i iz is a linear function
w.r.t. z = (z1,...z,) with random coefficients (co, c1, ..., ¢s)
» minimize bPOE of L(z) w.r.t. 2
min p(x, L(z)) = minmin E [a(L(z) — z) + 1]
z

z a>0

:mln]E co—i—chzz—x +

za

= min E[ (¢ — x)a + ch-azi + 1"

z,a>0

n
— mi _ s +
= yr,%lznoE [(co — x)a+ Z ciyi +1

» change of variables az — y reduces the problem to convex and
linear proramming w.r.t. variables y, a
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